import matplotlib.pyplot as plt
import numpy as npCalculate fraction of excited states¶
You have a two state system. Consider difference between energy levels between units of kj/mol
Calculate how changes as a function of at temperature kj/mol
Repeat calculation for a few temperatures
delta_Es = np.arange(0, 5, 0.1) Compute average energy and heat capacity as a function of temperature¶
# Define the energy levels and set kB=1 to simplfy units
E0, E1 = 0, 1
# Define a range of temperatures (avoiding zero)
T = np.linspace(0.1, 5, 100)
# Calculate the internal energy U
# Calculate the heat capacity C
C = np.diff(U) / np.diff(T)---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[3], line 10
5 T = np.linspace(0.1, 5, 100)
7 # Calculate the internal energy U
8
9 # Calculate the heat capacity C
---> 10 C = np.diff(U) / np.diff(T)
NameError: name 'U' is not defined# Plotting
#fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Internal energy plot
#ax1.plot(kbT, U, label='Internal Energy (U)')
ax1.set_xlabel('Temperature (T)')
ax1.set_ylabel('Internal Energy (U)')
ax1.set_title('Internal Energy vs Temperature')
ax1.legend()
# Heat capacity plot
# Skip the first temperature value since we used np.diff
#ax2.plot(kbT[1:], C, label='Heat Capacity (C)', color='r')
ax2.set_xlabel('Temperature (T)')
ax2.set_ylabel('Heat Capacity (C)')
ax2.set_title('Heat Capacity vs Temperature')
ax2.legend()
plt.tight_layout()