Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Summary of Ensembles

Entropy as a Function of Microstate Probabilities

Entropy is given by the Shannon-Gibbs entropy formula:

S([p])=kBipilogpiS([p]) = -k_B \sum_{i} p_i \log p_i

where pip_i is the probability of the ii th microstate.

Physical Constraints for Equilibrium

For a system to maintain equilibrium values, the microstate probabilities must satisfy the following conditions:

  1. Normalization:

    ipi=1\sum_{i} p_i = 1
  2. Constraint to Maintain the Expectation Value of an Observable XX (e.g., Energy or Volume):

    ipiXi=X,ipiYi=Y\sum_{i} p_i X_i = \langle X \rangle, \quad \sum_{i} p_i Y_i = \langle Y \rangle
ErE,VrV,NtNE_r\gg E,\quad V_r \gg V, \quad N_t \gg N
logΩr(EtE,VrV,NrN,)constβE+βμβPVlog \Omega_r(E_t-E, V_r-V, N_r-N,)\approx const - \beta E + \beta\mu -\beta PV
P(E,N,V)ΩΩreS(E,N,V)eβEeβμNeβPVP(E, N, V) \sim \Omega \cdot \Omega_r \sim e^{S(E, N, V)} \cdot e^{-\beta E} \cdot e^{\beta \mu N} \cdot e^{-\beta PV}

Comparison of Ensembles


EnsembleP(microstate) P(\text{microstate}) P(macrostate) P(\text{macrostate})
Microcanonical (NVE)P(microstate)=1Ω(E) P(\text{microstate}) = \frac{1}{\Omega(E)} P(E)eS(E)/kB P(E) \sim e^{S(E)/k_B} (entropy-dominated)
Canonical (NVT)P(microstate)eβE P(\text{microstate}) \sim e^{-\beta E} P(E)eS(E)/kBβE P(E) \sim e^{S(E)/k_B - \beta E} (entropy-weighted by energy)
Grand Canonical (µVT)P(microstate)eβ(μNE) P(\text{microstate}) \sim e^{\beta (\mu N - E)} P(N,E)eS(N,E)/kB+β(μNE) P(N, E) \sim e^{S(N,E)/k_B + \beta (\mu N - E)}
Isothermal-Isobaric (NPT)P(microstate)eβ(E+PV) P(\text{microstate}) \sim e^{-\beta (E + PV)} P(E,V)eS(E,V)/kBβ(E+PV) P(E, V) \sim e^{S(E, V)/k_B - \beta (E + PV)}

Extensive vs intensive variables

dU=TdSpdV+μdN+BdM+=ifidXidU = TdS-pdV + \mu dN + BdM + \dots = \sum_i f_i dX_i

Laplace Transform and Ensemble Connections

Legendre Transform and Thermodynamic Potentials

F(N,V,T)=UTS=LSU(S,V,N)F(N, V, T) = U - T S = \mathcal{L}_{S} U(S, V, N)
G(N,P,T)=UTS+PV=LS,VU(S,V,N)G(N, P, T) = U - T S + P V = \mathcal{L}_{S, V} U(S, V, N)

Partition Functions and Legendre Transforms

Ψ(f1,,fn,Xn+1,,XN)=U(X1,...XN)(f1X1+...fnXn)\Psi(f_1, \dots, f_{n}, X_{n+1}, \dots, X_{N}) = U(X_1, ... X_N) - (f_1 X_1+...f_nX_n)
Z(f1,,fn,Xn+1,,XN)=eβΨ(f1,,fn,Xn+1,,XN)Z(f_1, \dots, f_n, X_{n+1}, \dots, X_N) = e^{-\beta \Psi(f_1, \dots, f_{n}, X_{n+1}, \dots, X_{N})}

Fluctuation-Response Relations

Energy fluctuations (Canonical Ensemble):

σE2=kBT2CV\sigma^2_E = k_B T^2 C_V

Particle number fluctuations (Grand Canonical Ensemble):

σN2=kBTκTV\sigma^2_N = k_B T \frac{\kappa_T}{V}

Key Insights