Skip to main content
Back to top
Ctrl
+
K
Overview
Chapters
1. Intro to Quantum Mechanics
Why Quantum mechanics
The need for quantization
Photoelectric effect
Atomic spectra
Wave-particle duality
DEMO: Black Body radiation
DEMO: Visualizing complex numbers
2. Waves and wave equation
Waves
Wave equation
DEMO: Visualizing waves
DEMO: Bonus challenge
3. Schordinger Equation
Schrödinger Equation
Wave function
Particle in a Box
Applications of Particle in a Box Model
Postulates
P1 Characteristics of Quantum Wavefunctions
P2 Operators
P3-4 Eigenvalues and Expectation
P5 Time dependence
Fourier Transforms and Quantum Mechanics
DEMO: Particle in a box
DEMO: Quantum Waves
DEMO: Bonus challenge
4. Model systems
Molecular degrees of freedom
Classical Harmonic Oscillator
Quantum harmonic oscillator
Molecular Vibrations
Angular momentum
Rigid Rotor
5. Hydrogen Atom
Hydrogenlike atoms
Atomic orbitals
Spin
DEMO: H wavefunctions
Bonus: Atomic Orbitals
6. Approximations
Perturbation Method
Variational Method
Linear Variational Method
DEMO: Pertrubation Theory
DEMO: Solving QM problems with Variational method
7. Multielectron atoms
Helium atom
Multi-electron atoms
Angular momentum of many-electron atoms
Atomic terms and selection rules
8. Molecules
BO approximation
The hydrogen molecule ion
Energy of the hydrogen molecule ion
Molecular orbital description of hydrogen molecule
Orbitals of homonuclear diatomic molecules
Electronic structure of polyatomic molecules: the valece bond method
Huckel molecular orbital theory
Dipole moments and ionic bonding
Intermolecular forces
DEMO: Solving
\(H^{+}_2\)
via Variational Method
A. Math
Integrals
Differentiation
Complex numbers
Linear Algebra 1: Basics
Linear Algebra 2: Enter The Matrix
Linear Algebra 3: Inner products
Application: Hopfield Neural Networks
B. Practice Problems
Practice Problems for Exam 2
Extra stuff
Equation sheet
Python
Python3
NumPy
Plotting
Sympy
.md
.pdf
A. Math
A. Math
#